KNF-ENG-07

Internal Exposure Dose Assessment Using Urine Analysis

RADIATION & ENVIRONMENT DEPT. RyuJi Chang T. 042-869-3076 E. ryujc@knfc.co.kr

A technique which evaluates internal exposure doses of radiation workers using indirect method(In-vitro). Internal exposure dose means exposure by radioactive materials in the body. To evaluate this, a detector(HPGe or NaI(Tl)) can be used outside of body or a radioactive material in urine can be measured. Internal exposure does assessments using urine are effective way to detect low-exposure dose compared with the direct method and it takes shorter analysis times giving high convenience to the radiation worker.

Description

Background

 Internal exposure dose assessments are essential for the radiation safety management of radiation workers. In the case of nuclide which emits lowenergy gamma rays like uranium, it takes a lot of time and is difficult to detect low-exposure dose by direct method. To overcome these shortcomings and manage low-exposure dose, internal dose assessments using indirect method are necessary.

Purpose and Necessity

- Development of an internal exposure dose assessment system for radiation workers using indirect method
 - Nitric acid dilution method, microwave method, UTEVA resin method, etc. are used
 - Measurement of minimum uranium(about 20~200 ng/L) from the urine sample using ICP-MS

- The only way to measure Type F uranium which is quickly absorbed from the lungs to the blood
- Establishing a system that can respond quickly in case of an emergency such as UF₆ leakage accident, etc.
- Exposure dose can be assessed according to a various intake situation
- Evaluating internal dose by ingestion, which cannot be evaluated by direct method
- Reducing radiation worker's inconvenience
 Shorten more than 30 minutes compared to lung radioactivity measuring system
 - Increase convenience of worker's sample submission thanks to using spot urine sample
- Technical Composition and Procedure
 - Technical Composition
 - Urine sample quality management: Use sterilized sample bottle and keep it in the refrigerator which can control temperature
 - Quadrupole ICP-MS: Analyse uranium in the sample after pre-processing

< ICP-MS >

- < Pre-processing room >
- Creatinine analysis: Convert spot samples to 24hour samples

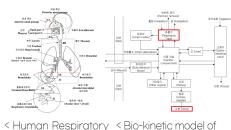
< Creatinine measurement >

- Internal dose assessment: Evaluate worker's intake amount and assess committed effective dose.

- Work Procedure
 - Registration of personal details : Management of working days, uranium enrichment information of working process and radioactive concentration information in the air during the process.
 - Applying the analysis information of working area environment : uranium dust size during the process(AMAD) and uranium chemical type(Type F, M, S).

<AMAD measurement and evaluation>

- Collect worker's urine sample: Submitting urine samples within the monitoring period
- Pre-processing of urine sample : Analyse uranium in urine sample by ICP-MS after pre-processing such as nitric acid dilution method, microwave method and UTEVA resin extraction method


- Measurement of uranium and elimination of background : Analyse uranium concentration in worker's sample after removing the background, the amount of uranium contained in the urine of the public.
- To minimize errors caused by matrix effect, the results of uranium measurements are calibrated by the internal standard
- Convert spot urine sample to 24-hour : Convert the amount of uranium in the spot sample to the amount of uranium released 24 hours using the creatinine concentration
- Exposure dose assessment: Evaluation of worker's exposure dose using computer program considering intake type(inhalation/ ingestion), chemical type, intake pattern(acute/ chronic), working time and remaining uranium.

< Internal dose assessment program >

multiplying the amount of uranium intake by effective dose coefficients(e_{50}).(Using HRTM and GI model from ICRP)

< Human Respiratory < Bio-kinetic model of Tract Model(HRTM) > uranium >

Distinctiveness

Characteristics

- Providing measurement for low exposure dose by intake of uranium
- Deliver faster results than direct measurement
- Providing analysis of F uranium(UO₂, UO₂F₂) Type

Benefits

- Convenient analysis method compared to lung radioactivity measuring system
- Providing exposure dose by uranium ingestion in daily life
- Providing alternative method of analysis other than lung measurement in case of an emergency situation
- Providing results of exposure dose assessment which is faster than direct method to a large number of workers

Experience

- Performing internal exposure dose assessments for radiation workers(2018.1.~)
- Preparing for the registration of dose assessment licence
- Development of urine sample analysis on the beta/gamma rays emit nuclides

Deliverables

- · Establishment of bioassay laboratory
- Provide an internal dose assessment method manual
- Provide the information of exposure dose assessment for uranium-intake workers

Technology Readiness Level (TRL)

Actual system proven through operation

Business Model

Technology Transfer

Licensing

Joint Search

Othere

Service Execution