KNF-FUEL-02

Uranium Purification

PROCESS DEVELOPMENT DEPT. Seungchul Yang

T. 042-868-1371 E. seungchul@knfc.co.kr

Uranium purification process is a chemical process which separates pure uranium from the uranium containing impurities. Uranium mixture dissolves in nitric acid to form crude UNH solution. When this solution contacts with TBP(Tri-N-Butyl Phosphate), uranium is selectively extracted by TBP from the solution. This way, the pure uranium is obtained.

Description

Purpose

Extract pure uranium from uranium containing impurities

Necessity

- The core process through front-ends and backends of the nuclear fuel cycle
- Indispensable to the uranium recovery process to recover uranium scraps
- Applicable to uranium recovery process to extract uranium from radioactive wastes
- · Applicable to non-uranium metal refining

Principle

• Extraction: TBP in the organic phase selectively extracts uranium from crude UN solution

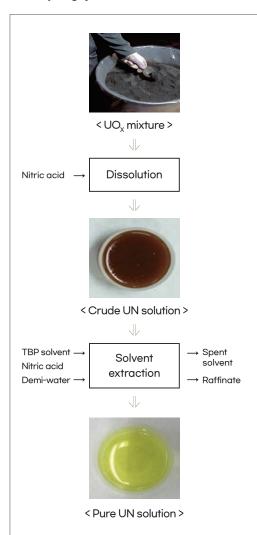
```
UO_2^{2+}(aq) + 2NO_3^{-}(aq) + 2(C_4H_9)_3PO_4(org)

\rightarrow UO_2(NO_3)_2 \cdot 2(C_4H_9)_3PO_4(org)
```

• Stripping: Water or diluted nitric acid extracts uranium from the organic phase containing UN

```
UO_2(NO_3)_2 \cdot 2(C_4H_9)_3PO_4(org)

\rightarrow UO_2^{2+}(aq) + 2NO_3^{-}(aq) + 2(C_4H_9)_3PO_4(org)
```


• Solvent regeneration: Decomposition products of TBP are removed by reacting with Na ions in alkali solution and forming water-soluble compounds

```
 \begin{split} &(C_4H_9)_2HPO_4(org) \ + \ Na^+(aq) \to (C_4H_9)_2NaPO_4(aq) \ + \ H^+(aq) \\ &(C_4H_9)H_2PO_4(org) \ + \ 2Na^+(aq) \to (C_4H_9)Na_2PO_4(aq) \ + \ 2H^+(aq) \end{split}
```

FUEL THE FUTURE, VALUE-UP KNF

Process configuration

- Uranium purification process consists of 3 sub-processes: Dissolution, solvent extraction, solvent regeneration
 - Dissolution : Dissolving uranium mixture in nitric acid to form crude UN solution
 - Solvent extraction: Extracting uranium from crude UN solution to produce pure UN solution
 - Solvent regeneration : Regenerating and recycling spent solvent from solvent extraction

Distinctiveness

Characteristics

 Proven advanced process and performance compared to existing ones by developing the main process equipment independently

· Process performance

Impurity	Rejection (%)	Impurity	Rejection (%)
Al	97.9	Fe	95.7
В	90.9	Ni	99.5
Bi	99.7	Pb	97.0
Ca	95.3	Th	97.8
Cu	98.3	Zn	96.4

- Impurity content in pure UN: within 3% of the allowable limit [DC virgin powder: 7%]
- More stable: by unique interface control technology with less controls and simplified logic
- More effective: by unique pulse generation method with smaller equipment requiring less power
- More flexible: by unique modularized extraction column

Benefits

- Cost reduction in purchasing new uranium by utilizing/recycling uranium scrap
- · Transfer plant technology

Experience

• Commercial plant EPC completed : Max. capacity 40 ton.U/yr

Deliverables

- Product: UO₂ powder (with AUH reconversion process)
- · Overseas uranium purification plant EPC
- · Technical services
 - Uranium purification
 - Uranium recovery from wastes containing uranium
 - Uranium purification process design and engineering
 - Similar process development, design and engineering

Technology Readiness Level (TRL)

Actual system proven through operation

Business Model

Technology

Licensing

Joint Search

Service Execution

Others