KNF-SW-04

Non-LOCA Safety Analysis Methodology based on 3-Dimensional Core Simulation (CHASER)

REACTOR CORE TECHNOLOGY DEPT. Park, Jin Woo T. 042-868-1447 E. jinwoo@knfc.co.kr

Non-LOCA safety analysis methodology based on 3-dimensional core simulation has been developed to alleviate the excessive conservatism in the current methodology using point-kinetics model and to prepare for the application to stricter regulatory requirements.

Description

Background

 Current Non-LOCA safety analysis methodology uses point kinetics model or 1-dimensional core model therefore, additional conservative assumptions should be applied and it results in excessively conservative consequence. • The regulatory requirements are becoming more strict after the Fukushima disaster. The current methodology is not good enough to meet all the regulatory requirements.

• Purpose

- Developing Non-LOCA safety analysis methodology based on 3-dimensional core simulation to prepare for the stricter regulatory requirements and to narrow the technology gap against oversea organizations.
- Non-LOCA safety analysis methodology based on 3-dimensional core simulation
 Code system
 - ASTRA, THALES and FROST codes which were developed by KNF have been

coupled with CHASER code, which is for 3-dimensional core analysis.

- To develop the transient analysis code system based on 3-dimensional core simulation, SPACE, nuclear plant system T/H analysis code, was additionally linked to CHASER code system.
- The validation of code system has been performed by benchmarking international standard problems such as rod ejection, rod withdrawal and main steam-line failure.

Methodology

- 3-dimensional core simulation alleviates the excessive conservatism of current methodology(point-kinetic or 1-dimensional model).
- The non-conservatism of best-estimate methodology has been covered through the deterministic approach using conservative kinetic parameters(moderator temperature coefficient, Doppler temperature coefficient, shutdown reactivity, delayed neutron fraction, prompt neutron life-time).

Analysis results

 The analysis results of rod ejection and main steam-line break accident using 3-dimensional methodology show that the excessive conservatism of the current analysis results is alleviated.

Conclusion

- The transient safety analysis methodology based on 3-dimensional core simulation can

enhance the nuclear power plant's safety margin and contribute to resolving safetyregarding issues.

Distinctiveness

Characteristic

• The 3-dimensional methodology uses ASTRA, THALES, FROST developed by KNF and SPACE developed by other domestic company which means it lowers the dependency on the analysis codes developed by overseas companies.

Benefits

- It can help to increase safety margin and solve the safety issues of nuclear power plants.
- It can be used to solve safety analysis issues such as high-burnup fuel damage.

Experience

• The licensing process of the rod ejection methodology based on 3-dimensional core simulation is completed.

Deliverables

• Safety analysis results using 3-dimensional methodology

Technology Readiness Level (TRL)

Prototype validation in operational environment

Business Model

Fechnology Transfer

Licensing

Joint Search

Service Execution

Others