KNF-WASTE-01

Melting Decontamination for Radioactive Metal Waste

RADIATION & ENVIRONMENT DEPT. Byeonggyo Jeong T. 042-868-1621 E. bkjeong@knfc.co.kr

Decontamination & clearance technology for the radioactive metal waste which is difficult to be decontaminated or measured because of its complex shape

Description

• Purpose

- Volume reduction, decontamination & clearance for radioactive metal waste
 - ※ Self disposal : If the concentration per nuclide in the radioactive waste is less than the permissible self disposal limit, it's managed by incineration, landfill, recycling, etc. as a non-radioactive waste.

Background and Necessity

- Treatment technology for radioactive metal waste that cannot be decontaminated or measured is needed to be developed.
- Countermeasure against the increasing radioactive metal waste volume
- · Limited radioactive waste storage capacity
- Financial burden due to the continuous increasing radioactive waste disposal fee
- Public attention to safety regarding the radioactive waste

• Principle

- Radioactive material in molten metal tends to migrate to the slag
- Radioactive material can be separated from the molten metal by removing slag

< Wastes before Decon >

< Melting Decon >

< Ingots after Decon >

Nuclide	Radioactivity distribution after decontamination		
	Ingot	Slag	Dust
U-238, U-235	1 %	98 %	1 %
Th-232, Th-234	< 1 %	> 98 %	1 %
Ra-226, Ra-228	-	98 %	2 %
Pb-210	-	7 %	93 %

Object

- Nuclide : U-238, U-235, Th-232, Th-234, Ra-226, Ra-228, Pb-210, etc.
- Material : Carbon Steel, Stainless Steel, Aluminium
- · Radioactivity distribution after decontamination(Markus Hamm, 1999)

System Configuration

- · High frequency oscillator : Generate high frequency and supply it to furnace to heat the metal
- · Melting furnace : Heat the metal
- Cooler : Cool the heat from furnace, cables, oscillator, etc.
- · Dust collector : Remove dusts while working

< High frequency oscillator >

< Melting furnace >

< Cooler >

- · Charging metal wastes into the furnace
- · Heating metal wastes and melting
- Decontamination by removing the molten metal slag

- · Pouring molten metal into the molds
- · Cooling ingots
- · Measuring radioactivity of ingots
- · Carrying out ingots

Distinctiveness

Characteristics

- · Decontaminate the radioactive metal waste to a certain level that is self-disposable
- · Decrease the volume for easier handling

Benefits

- · Reduce radioactive waste disposal fee
- · Enhance radioactive waste management safety

Experience

- · Clearance of radioactive metal waste of KNF since 2011
 - Decontamination and clearance of metal 400 drums per year

Deliverables

- · Melting decontamination process
 - Facility design, Installation and Operation
 - Radioactivity analysis, Licensing support
- · Operation experience, Education and Consultation

Technology Readiness Level (TRL)

Actual system proven through operation

Business Model

Licensing

Service Execution